Orthogonal representations, minimum rank, and graph complements

نویسنده

  • Leslie Hogben
چکیده

Orthogonal representations are used to show that complements of certain sparse graphs have (positive semidefinite) minimum rank at most 4. This bound applies to the complement of a 2-tree and to the complement of a unicyclic graph. Hence for such graphs, the sum of the minimum rank of the graph and the minimum rank of its complement is at most two more than the order of the graph. The minimum rank of the complement of a 2-tree is determined exactly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Representations, Projective Rank, and Fractional Minimum Positive Semidefinite Rank: Connections and New Directions

Fractional minimum positive semidefinite rank is defined from r-fold faithful orthogonal representations and it is shown that the projective rank of any graph equals the fractional minimum positive semidefinite rank of its complement. An r-fold version of the traditional definition of minimum positive semidefinite rank of a graph using Hermitian matrices that fit the graph is also presented. Th...

متن کامل

Ela Minimum Vector Rank and Complement Critical Graphs

Given a graph G, a real orthogonal representation of G is a function from its set of vertices to R such that two vertices are mapped to orthogonal unit vectors if and only if they are not neighbors. The minimum vector rank of a graph is the smallest dimension d for which such a representation exists. This quantity is closely related to the minimum semidefinite rank of G, which has been widely s...

متن کامل

Minimum vector rank and complement critical graphs

Given a graph G, a real orthogonal representation of G is a function from its set of vertices to R such that two vertices are mapped to orthogonal unit vectors if and only if they are not neighbors. The minimum vector rank of a graph is the smallest dimension d for which such a representation exists. This quantity is closely related to the minimum semidefinite rank of G, which has been widely s...

متن کامل

Minimum Rank of Graphs with Loops

A loop graph G is a finite undirected graph that allows loops but does not allow multiple edges. The set S(G) of real symmetric matrices associated with a loop graph G of order n is the set of symmetric matrices A = [aij ] ∈ R such that aij 6= 0 if and only if ij ∈ E(G). The minimum (maximum) rank of a loop graph is the minimum (maximum) of the ranks of the matrices in S(G). Loop graphs having ...

متن کامل

Beyond Low-Rank Representations: Orthogonal Clustering Basis Reconstruction with Optimized Graph Structure for Multi-view Spectral Clustering

Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007